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ABSTRACT

The objectives of this study arc to determine P- and S-wave velocity structurcs in the crust and upper mantle, and to
characterize seismic wave propagation in the Arabian-Eurasian collision zone and surrounding arcas, including Iran,
Arabia, Eastcrn Turkey, and the Caucasus. The Arabian-Eurasian plate boundary is a complex tectonic zone shaped
by continent-contincnt collision processes. In recent years the number of scismic stations has increased greatly in the
region because of expanded seismic networks in Azerbaijan, Turkey, Iran and the Gulf countries. We have been
collecting the data through cooperation with individual nctwork operators and the countries. Considerablc cffort has
been directed to colleeting P and S seismic arrival time data recorded by the ncw networks in Iran. Using arrival
time data wc obtaincd Prr and Sn images of the uppermost mantle beneath Arabian-Eurasian Collision Zone
including Iran, the Caucasus, and the Arabian Peninsula by tomographic inversion. With the ncwly obtained data
from Central Asia incorporated into our databasc, we improved the ray coverage in our study region.

Our current plan is to utilize the new data from Iran to improve the velocity models. This effort will includc
tomographie inversions for veloeity structure in the erust and upper mantle, relocation of all events, and the
validation of models using synthetic seismograms to fit available broad-band waveforms.
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OBJECTIVES

The objectivcs of this study arc to determinc P- and S-wave velocity structurcs in the crust and upper mantle, and to
characterize seismic wave propagation in thc Arabian-Eurasian collision zone and surrounding areas, including Iran,
Arabia, Eastern Turkey, and the Caucasus. The area of the study, shown in Figurc 1, cxtends east-west from the
Mediterranean to Central Asia, and north-south from the Caspian to the Gulf of Adcn and the Arabian Sea. Thc arca
covers all of the Arabian platc, the collision zone, and the areas in the Eurasian plate whose structure and tectonics
arc affccted by the collision. The project will include data from countries whose seismic networks have expanded
significantly in recent years, such as Turkey, Azerbaijan, Iran, Kuwait, United Arab Emirates (UAE), Oman, and
Saudi Arabia. These locations provide data for high-resolution P and S wave travcl-timc tomography. Recent
observations show that wave propagation and attenuation vary significantly even with small changes across the
suture zone, indicating rapid spatial changcs in the crust and mantle properties.

A number of unanswered questions remain about the structure and processes in the upper mantle beneath the
collision zone. The fate of the Ncotethys platc subducted prior to the continental collision remains largely unknown.
Therc arc no intermcdiatc and dcep carthquakes under the Zagros-Bitlis suture zonc, yet the subduction is too recent
for the slab to reach thermal equilibrium and bc assimilated. Somc studics have suggcsted that the slab has recently
broken off beneath the suture zone (Bird, 1978; Molinaro et al., 2005). In the Makran subduction zone in the south,
seismicity and structure have been studied with the deployment of dense seismic networks (Yamini-Fard and
Hatzfeld, 2006), confirming the Makran subduction, yet the nature of the transition from the subduction zone to the
Zagros suture zone has not been fully resolved. High-resolution travel-time tomography would be a major step
towards defining the present-day crustal and mantle structure of the Middle East rcgion.

Figure 1. Topographic map of the Middle East and surrounding regions. White lines denote the location of
known faults, while the black dots represent the epicenter locations of earthquakes in the region.
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RESEARCH ACCOMPLISHED

Tectonic Setting

The Arabian-Eurasian plate boundary is extremely complex, and it is an ideal region to study a young (gcologically)
continent-continent collision belt. The current tectonics of the region are controlled by the collision and continuing
convergence of the Arabian and Eurasian platcs. The Arabian and Eurasian plates collided in the carly Miocene,
after the Neotethys Sea was subducted beneath Eurasia (Bird, 1978; $Sengér and Yilmaz, 1981; Jackson and
McKenzie, 1984; Dewey et al., 1986). Pre-, syn-, and post-collision tectonics produced very complex structures in
the region. Over the last decade, a number of seismic studies have examined the crust and upper mantle structure
beneath the Middle East to constrain the nature of the Arabian-Eurasian collision zone. Large-seale surface-wavc
tomography studies have shown variable crustal thickness and upper mantle velocities (Ritzwoller and Levshin,
1998; Pasyanos et al., 2001; Villasenor et al., 2001; Pasyanos and Walter, 2002; Shapiro and Ritzwoller, 2002;
Alinaghi et al., 2007; Reiter and Rodi, 2006). Regional-scale surface wavc tomographic studies further highlight the
complexity of the collision zone (Mindevalli and Mitehell, 1989; Rodgers et al., 1999; Mokhtar et al., 2001; Maggi
and Priestley, 2005) showing a thickened crust under the Caucasus and Zagros, and low shear velocity beneath the
Turkish and Iranian platcaus.

Hearn and Ni (1994), Ritzwoller ct al. (1998), Al-Lazki et al. (2003; 2004), and Phillips et al. (2007) found slow Pn
veloeities (< 8 km/s) beneath the Anatolian plateau, northwestern Iran, the Greater Caucasus, and southwestern
Arabia. The Pn velocitics beneath northern Arabia and the Caspian region are faster than average (Al Lazki et al.,
2004; Ritzwoller et al., 2002). This high degree of variability suggests that the Earth structure may be extrecmely
complicated in the region.

Studies of the propagation and attenuation characteristics of regional waves (c.g., Pn, Sn, and Lg) provide
additional evidenee for strong heterogeneities. Surface wave studies show high shear wave attenuation beneath
Iran, Anatolia and the western part of the Arabian platc, and relatively low attenuation in central and castern Arabia
(Seber and Mitchell, 1992; Sandvol ct al., 2001; Jamberie and Mitchell, 2004; Molinaro ct al., 2005; Bergman et
al., 2008; Priestley ct al., 2008; Pasyanos ct al., 2009). Sn and Lg waves are attenuated through mueh of the
collision zone between the Arabian and Eurasian plates (Kadinsky-Cade et al., 1981; Rodgers et al., 1987; Mitchell
ct al., 1997; Cong and Mitchell, 1998; Gok et al., 2000; Sandvol et al., 2001; Al-Damegh et al., 2004; Zor et al.,
2007). An Lg blockage exists across the Bitlis suture zone and across the Zagros fold and thrust belt. The studies
mentioned above present consistent rcsults for the crust and uppermost mantle scismic properties on a rcgional
scale. Significant variation in waveforms, observed particularly in short-period seismograms, over propagation
paths that are close to each other, suggests structural variations over short distanccs at regional boundaries.
Delineating these fcatures rcquires seismie data from dense local and regional seismic networks. During this year
we were able to increase the phase (arrival time) data significantly by adding readings from Iran and other regional
networks.

Travel-Time Data and Pn and S» Tomography

An important task under this project is to collect arrival time data from scismic stations situated in more than 20
countrics in the rcgion. A significant number of these stations are in nctworks that arc relatively new and whose data
arc not available from global data centers such as IRIS or [SC. Figure 2 shows seismic stations in the region from
which data may be obtained either through data centers or by bilateral arrangements. In the past ycar, Iran started to
make available phase data from its networks. In [ran there are seven regional networks, deployed around major
citics, with a total of 73 stations. Recently, Tehran University was designated as the central location that would
collect and integrate data from the regional networks into a central databasc. The use of data from stations in Iran
rcquired deciphering of nomenclature and resolution of some apparent diserepaneies between data from individual
networks and the central database. We were able to obtain 100,000 P and 70,000 S arrival time recordings from
local carthquakes in the timce period between January 2006 and March 2008. Our database for the Prn tomography in
the whole study region includes 160,000 arrival times from 850 stations and 18,000 earthquakes. The source-station
ray paths are shown in Figure 3A. For S, the data are fewer, with 75,000 total phase reading. The ray paths are
shown in Figure 3B.
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Figure 3. (A) Top: Ray paths for Pn travel timcs. From 18,000 cvents rccordcd by 850 stations (red trianglcs),
160,000 Pn rays were obtaincd (black crosses). (B) Bottom: Ray paths for 75,000 Sn travcl times.
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Figure 4. (A) Top: Pn veloeity lateral variations. Average Pn veloeity is 8.09 km/s. (B) Bottom: Sn veloeity
lateral variations. Average Sn velocity is 4.6 km/s.

The Pn and Sn travel times (residuals) are inverted for lateral veloeity variations using Hearn’s approach (Hearn,
1996; Hearn et al., 2004), modified by Pei et al. (2007). Figures 4A and 4B show Pn and Sn veloeities, respectively.
The general features of Pn veloeities are similar to those of Philips et al. (2007) exeept that Figure 4A has finer
spatial resolution. P veloeities are low under eastern Anatolia, NW Iran, and the Southern Caueasus. Isolated low-
veloeity anomalies exist along the Levant Fraeture (Dead Sea Fault) Zone. A prominent low-veloeity feature is
observed just to the south of the Caspian Sea. The Iranian plateau is eharacterized by lower than average Pn
veloeity. Pn veloeities are high under the Arabian platform, the Persian Gulf, and under the Zagros fold belt. Most
likely these are the veloeities assoeiated with the top of the Neotethys lithosphere. In the north, the higher veloeities
are under the Blaek Sea, the Rioni and Kara Basins between the Greater and Lesser Caueasus, under the southern

243




2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

Caspian, and the Kyzyl and Kara Kum Basins of Turkmenistan, These are most likely the remnants of the
Paleotethys (Giilen, 1989). Sn veloeities shown in Figure 4B are similar to Pn. In general, the regional features

eorrelate quite well. Some isolated anomalies (e.g., the Levant Fraeture Zone) are very similar between the Pn and
Sn.

Data from Iran

Most important new data for this study eome from two seismie networks in Iran: Iranian Seismie Telemetry
Network (ISTN) and Iran National Seismie Network (INSN) (Figure 5). The ISTN was founded in 1995. In total 73
stations are grouped into ten sub-networks distributed in most parts of Iran. There are 67 three-eomponent short
period stations and six analogue stations. The International Institute of Earthquake Engineering and Seismology
operates the other nation wide seismic network: INSN. All 30 INSN stations use broadband seismographs. Figure 5
shows the station distributions in both networks.

The Institute of Geophysics at Tehran University serves as the eentral proeessing faeility for [ISTN. Under their
management, the data quality has improved significantly in the past few years. They make available through their
website travel time, amplitude, and, for seleeted events, waveform data. Figure 6 shows examples of travel time data
from both ISTN and INSN networks. We eolleeted phase arrivals and maximum amplitudes reported by both
networks from July, 2004 to May, 2009. This dataset provides abundant local and regional phase arrivals, which are
useful in extraeting crustal seismie strueture. The ISTN catalogue includes 25,471 earthquakes between Feb, 2006
and Apr, 2009. More than 240,000 arrivals were reported. There are about 160,000 P arrivals and 80,000 S arrivals.
The INSN reported 3,342 events before 2008 and used 15,112 P-wave arrivals, 4,927 S-wave arrivals to locate
events.

40 50° 60°

Figure 5. Seismic stations in Iran. INSN stations are in circles and ISTN stations are in triangles.
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Figure 6. Available P and S travel times from INSN (left) and ISTN (right) networks.
Relocation of Earthquakes in Iran

The local and regional networks (shown in Figure 5) provide good data coverage (Figure 6) to relocate earthquakes
using high-quality P- and S-wave travel-times. We apply an adaptive-mesh, double-difference tomography method
to the Iranian data set to improve event locations and to obtain preliminary velocity models (Zhang and Thurber,
2003; 2005). Figure 7 shows the comparison of travel-time residuals using 1-D and 3-D models for event relocation.
The 1-D P and S models used for reloeation were adopted from Crust 2.0 and the 3-D models were obtained while
simultancously locating events. The overall residuals are reduced from 1.2 s to 0.9 s. Figure 8 shows the relocation
ofa group of events in the year of 2006 and an example of event reloeation using 1-D and 3-D models. The average
difference between the original locations and the 3-D reloeations is 10 km.

1200

-5 -4 -3 -2 -1 0 1
residual(sec)

Figure 7. Comparison of residuals using I-D model (solid line) and 3-D model (red).
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Figure 8. Epicentral differences between the relocations and original locations of earthquakes in Iran.

CONCLUSIONS AND RECOMMENDATIONS

Primary activities were dedicated to collecting P and S wave loeal/regional arrival time data from morc than

750 stations in the study area. For the first time we were able to obtain arrival-time data from 103 stations in Iran.
Altogether 200,000 P arrivals and 100,000 S arrivals from Iran were added to the database to do a seamless
tomography of the erust and upper mantlc. The tomographic results reveal a significant low velocity zone to the
south of the Caspian Sca. Along the Zagros belt, a large low-velocity zone is clearly observed. Other prominent low
Pn and Sn anomalies are visible in the Northwestern Iran, the Caucasus Anatolian Plateau and the Eastcrnmost
Mcditerranean. We are in the process of testing thesc models using well-locatcd ground-truth events and synthctic
seismograms to fit available broad-band wavcforms.
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